

EU place-based Research and Innovation territorial ecosystems. Theoretical framework and main findings from territorial case-studies

a potential tool for a territorial sustainable growth

Brussels, June 5th 2025

ERA_Fabric

HORIZON-WIDERA pilot project (2023-2025) funded by the European Union

ERA_FABRIC Framing And Bridging Regional Research and Innovation ecosystems capacities for a renewed ERA

The ERA_FABRIC project aims to develop and test the ERA Hubs concept across different geographies and structures in Europe, based on common compliance criteria.

The process acts as an incentive for advanced ecosystems to seek recognition, and for less advanced ecosystems to reach the criteria facilitating support from European, national and regional level

Aim of the contribution

Immediate objective

Defining robust theoretical and empirical boundaries of the concept of ERA Hub in the light of theoretical assumptions and effective experiences of existing entrepreneurial/institutional agglomerations of private and public actors in the European regions

Final goal

Enhancing the level of knowledge for researchers and policy makers of one of the potential pillars of the European Research and Innovation policy and territorial development

Policy background

The European Research Area (ERA) is the initiative aimed at creating a single, borderless market for research, innovation and technology across the EU. ERA was launched in 2000 and a process to revitalise it began in 2018.

In order to relaunch the R&I development, in the EU communication launched on September 30th 2020 four key strategic objectives were defined: **1.prioritising investments in R&I; results into the economy;** 4. deepening policies that promote the free circulation of knowledge.

The ERA policy agenda

The European Research Area (ERA) Policy Agenda <u>three-year roadmap</u> that guides collaboration and policy coordination in the EU for research and innovation.

The first and second ERA Policy Agenda 2022-2024, 2025-2027

Deepening a truly functioning internal market for knowledge. Green and digital transition increasing society's participation in the ERA Amplifying access to research and innovation excellence across the Union Advancing concerted research and innovation investments and reforms.

Criticality Variety of tools and initiatives; Fragmentation

Characteristics of the ERA Hubs

In the light of the objectives described and the most recent EU publications on R&I policies the main distinctive ingredients of an ERA Hub should be:

- Directionality (EC 2024): directionality refers to the mobilization of the public and private stakeholders around shared objectives

- Multi-level governance processes (Larrea et al 2019) : an ERA Hub is inherently multi-level in its intervention/composition/membership. This means that the integration and mobilization effort across the diversity of stakeholders needs to be made across vertical governance and implementation levels

- Horizontal integration: an ERA Hub is a formal bridge to other knowledge ecosystems (ideally, other ERA Hubs), independently of regional or national borders.

- Holistic approach (Edquist 2014): an ERA HUB brings together all the public and private stakeholders and support co-creation and joint ownership of the goals and process.

It is the combination of these characteristics that make ERA Hubs unique and create added value when compared to other existing initiatives.

The three dimensions of the ERA Hubs

The ERA Hubs, on the basis of our research approach, could be understood along three potential different dimensions:

1) ERA Hubs as Knowledge Ecosystems: fostering the dynamic interaction of R&D and innovation actors at regional and multiregional levels, taking into account the different knowledge and cultural contexts and the alignment of research foci and industrial needs;

2) ERA Hubs as Multi Stakeholder Platforms: bringing together the representatives of the various involved interest groups in a seamless and uninterrupted discussion and deliberation on strategic priorities, actions and results evaluation;

3) ERA Hubs as a Policy Co-Creation Toolbox: a transformative set of measures and tools operating in a "middle ground" configured as a distinct space from both the EU and the MS/Regional levels

The first of the three dimensions - ERA Hubs seen as territorial ecosystems - will be specifically analysed in this work

Theoretical framework: knowledge and innovation ecosystems a critical review of the concept

Is a knowledge and innovation ecosystem a unifiable concept? Does it match the concept of ERA HUB? (Wide review of the literature on ecosystems Scaringella et al (2018) Voda et al (2023) Valkokari (2015) Grandstram et al (2019),)

Putting together the baseline, the relationships, the logic of action and the type of partners involved of the innovation ecosystems and the knowledge ecosystems it is possible to enucleate a typology of agglomeration of economic actors well definable as <u>knowledge and innovation ecosystem</u> that shows the presence of:

- **1.** Co-creation of innovation processes as well as creation and transmission of knowledge in the short-medium and long run
- 2. Public and private actors, tools and objectives variously distributed but somehow wellbalanced in their direct and indirect roles
- **3.** Market-driven processes as well as a public regulation or, at least, a clearly recognized and certified (in different way) collective relevance, under a clear directionality

The characteristics of the innovation and the knowledge ecosystems seem to match in different ways the conceptual assumptions and the declared aims of the ERA Hubs.

Census of related experiences and good practices of knowledge and innovation ecosystems within the EU

Activity: Mapping existing place-based research ecosystems in advanced and emerging EU regions focusing on three domains: Sustainable manufacturing, Bio-based circular economy, Clean Renewable energy 26 ecosystems initially considered — selection of 15 ecosystems (5 ecosystems per domain)

Methodology: Through online and in presence interviews with referents of the 15 ecosystems as well as a desk research and submission of the questionnaires significant data were collected and classified through conceptual categories and a wide description of the results

Goals

1) Modelling, through categories, the variety of the ecosystems analysed

- 2) Better defining the concept of ERA Hubs in the face of the real existing ecosystems
- 3) Fostering the ERA Hubs policy promoting and sustaining the replication of different good practices

Mapping innovation and knowledge ecosystems in Europe

13 Regions, 11 Countries involved

- Region Trøndelag Norway-
- Region Stockholm: Sweden
- Greater Helsinki: Finland
- Lower Austria (Austria)
- Catalonia (Spain)
- Norte (Portugal)
- Emilia Romagna, Liguria, Campania (Italy)
- Mazowieckie (Poland)
- South Moravia (Czech Republic)
- Jadranska Hrvatska (Croatia)
- Nord-Vest (Romania)

8 typologies of Partners / stakeholders involved

- Private companies (in 13 out of 15 ecosystems)
- Non-profit associations (in 6 out of 15 ecosystems)
 - Business associations (in 4 out of 15 ecosystems)
 - Clusters (in 4 out 15 ecosystems)
- Regional or national agencies (in 6 out of 15 ecosystems)
- Universities (public or private) (in 8 out of 15 ecosystems)
- Research centers (public or private) (in 8 of 15 ecosystems)
- Public administration (regional, national level): in 4 cases out of 15 direct participation of the PA in different forms. In all the ecosystems the Public Administration exerts the role of explicit stakeholder

The 15 ecosystems analysed

ECOSYSTEMS	Country	Type of research carried out	General domain	Specific domains	ERA FABRIC	
Bioeconomy Austria	Austria	Questionnaire and online interview	Bio-based circular economy	Wood-based circular bioeconomy.		
Biokraft AS	Sweden/Norway	Desk research	Bio-based circular economy	Renewable energy based on compressed biogas and liquefied bio	ogas; Climate	
Diomatrio	,,			smart recycling; Certified bio-fertilizer; efficient biogas production		
CoLab - ForestWISE	Portugal	Questionnaire and online interview Bio-based circular economy		Forest and wood management; fire prevention		
		Questionnaire, online interview and	Bio-based circular economy	Carbon neutral solution, sustainable products, biotechnology; fo	od solutions,	
VTT	Finland	desk research	(also CRE and SM)	industrial chemistry, biomaterial processing and products		
Waste Management and Recycling Cluster	Poland	Questionnaire and desk research	Bio-based circular economy	Creation of raw material facilities for industry		
		Questionnaire and desk research	Clean renewable energy	Materials for sustainability and ecological transition; Clean energy	y production,	
FCOCIETED	Italia		also BBCE	storage and saving; Green manufacturing;Smart mobility, housin	g and energy	
ECOSISTER	Italy			solutions for a carbon-neutral society; Circular and blue economy	; Ecological	
				transition based on HPC and Data Technology		
		Questionnaire and interview in presence Clean Renewable energy		Production of green hydrogen; Implementation of green hydrogen in industry		
H2 Valley	Spain			and mobility		
		Questionnaire and desk research	Clean Renewable energy	Green technologies in areas of hydro-energy (small hydro power	plants), solar-	
Intelligent Energy cluster	Croatia			energy (PV and thermal systems), biomass and energy efficiency		
		Interview scheduled	Clean Renewable energy	Hydrogen, Mobility, Energy production, Energy systems, Maritim	ne transport,	
RENERGY	Norway			Harbours,		
Mazovia Cluster ICT	Poland	Questionnaire and desk research	Clean Renewable energy	ICT, Energy		
INAACT	the bu	Questionnaire and interview in	Sustainable Manufacturing	Engineering of polymeric and composite materials and structures	s for:	
IIVIAST	italy	presence		sustainable mobility; Automotive; Aeronautics, Defense, Pharma	aceutics	
INTEMAC	Czech Republic	Questionnaire and desk research	Sustainable Manufacturing	Construction, control and diagnostics of mechanical engineering t	technology	
Packaging cluster	Spain	Questionnaire and interview in presence	Sustainable Manufacturing	Packaging and development of sustainable packaging		
Transilvania IT Cluster	Romania	Questionnaire and online interview	Sustainable Manufacturing	Information technology		
DAISE	lach	Questionnaire and online interview	Bio-based circular economy	Robotics and artifical intelligence; Cities and environment; Health	and digital	
KAISE	Italy		(also SM)	medical assistance; protection of local territory; Sustainable harb	ours	

18 categories adopted for the ecosystems'analysis

- Country
- Mission
- General domain
- Specific domains
- Territorial dimension
- Kind of activities
- Type of partners
- Co-creation and co-production processes
- Connection with other ecosystems

- Role of the public administration
- Prevalence of Private/Public objectives
- Stakeholder mobilization
- Juridical form
- Methods for defining strategic priorities
- Governance processes
- Funding and financial sources
- Results evaluation
- Critical areas

Several aspects of the ecosystems were analyzed and categorized. Main focus on four crucial dimensions

 Territoriality: strong local/regional and national impact together with well developed international connections. Both dimensions well balanced in all the case-studies; variety of regional and/or national dimension. The ecosystems foster local sustainable developmet

2. Public/private (P/P) dimensions, impacts and goals of the ecosystems

Three models (P/P) of ecosystems here emerged

1)MODEL 1P/P) (7 case-studies) : Ecosystems promoted by a private initiative and essentially aimed at fostering and strengthening an entrepreneurial territorial fabric. Weak role of the public subjects (low or zero level of public direct funds). Relevant public impact and possible systemic changes

2)MODEL 2P/P) (6 case-studies): Ecosystems promoted by a public (or mixed private/public) initiative

aimed at strengthening an entrepreneurial fabric in a territory. Relevant, but not predominant, role of the public subjects (significant share of direct public funds). Strong public impact and possible systemic changes.

3)MODEL 3P/P) (2 case-studies): Ecosystems promoted by a public initiative, essentially aimed at developing public collective objectives and systemic deep changes; predominant role of the public (and public direct funds), strong indirect impact on the entrepreneurial fabric.

3. Role of the sustainability (S): core/added value.

Two models (S) here emerged MODEL 1S) Sustainability as an added value (7 case studies) MODEL 2S) Sustainability as a core objective (8 case studies)

Cross sectional variable within the three models based on the public/private dimensions

4. Tension towards systemic changes: in all the ecosystems analyzed the level and type of processes of innovation systematically carried out seem to represent a tension towards relevant systemic changes

Public private dimensions/sustainability

ECOSYSTEMS	Country	Region	Geographical dimension	Public/Private dimension; basic aims	Sustainability core/added value
Biokraft AS	Sweden/Norway	Trøndelag/Region Stockholm	National/International	Group 1	Core
RENERGY	Norway	Trøndelag	National	Group 1	Core
Waste Management and Recycling Cluster	Poland	Mazowieckie	National	Group 1	Core
Mazovia Cluster ICT	Poland	Mazowieckie	National	Group 1	Added value
Intelligent Energy cluster	Croatia	Jadranska Hrvatska)	National	Group 1	Core
Transilvania IT Cluster	Romania	Nord-Vest	Regional/National	Group 1	Added value
Packaging cluster	Spain	Catalonia	Regional	Group 1	Added value
VTT Technical Research Centre	Finland	Greater Helsinky	National	Group 2	Added value
INTEMAC	Czech Republic	South Moravia	Regional/National	Group 2	Added value
RAISE	Italy	Liguria	Regional	Group 2	Core
IMAST	Italy	Campania	National	Group 2	Added value
H2 Valley	Spain	Catalonia	Regional	Group 2	Core
CoLAB - ForestWISE	Portugal	Norte	National	Group 2	Added value
Bioeconomy Austria	Austria	Lower Austria	Regional/National	Group 3	Core
ECOSISTER	Italy	Emilia Romagna	Regional	Group 3	Core

In spite of the wide variety of real experiences the case-studies deemed in the research share a common ground essentially based on these 9 elements:

The 15 heterogeneous case studies represent different types of knowledge and innovation ecosystems. Although in distinct forms they are all similarly oriented to transformative innovation, knowledge creation, territorial sustainable development, tension towards systemic changes, potentially representing powerful instruments for the ERA policy in its less recent and more recent guidelines

Directionality:

In all the case-studies, in different ways and with different nuances, there is the evidence of directionality in the proces intended as a convergence and coordination of intentions and actions towards common relevant objectives.

Transformative attitude:

In all the case studies, with a different degree and intensity, the ecosystems operate under the explicit mandate to continuously transform and innovate processes and products

Territorial sustainable development (green transition)

The processes of innovation and transformation (transformative attitude) are in all the cases analysed oriented (directionality) towards a more sustainable economy starting from the territories and local/regional contexts

A total of 169 surveys were submitted

The Likert scale was adopted to allow a bro ad range of responses from stakeholders.

The inclusion of 'Don't Know' allowed respondents to answer every question even if they weren't knowledgeable about all categories.

Results - Access to R&I Infrastructure and Services

Results – Policy Support and Governance Processes

Results - Collaboration and Knowledge Transfer

Main findings from the Survey

- Stakeholders recognise regional infrastructure and collaboration opportunities, but there are concerns about collaboration within and beyond regions.
- While horizontal integration across regions is facilitated by available funding, a more widespread collaboration culture is needed.
- While there's alignment between research and industry needs, transparency and incentives for collaboration require improvement.
- Stakeholders sought to increase the extent of commercialisation of research, perhaps lacking currently due to reduced levels of science-industry collaboration

- Public-private interaction requires better alignment with shared objectives.
- Research and innovation efforts face challenges due to insufficient stakeholder inclusion and resources for talent retention.
- Governance processes are inclusive, but effective resource management and civil society engagement needs to be enhanced.
- Roles amongst stakeholders need clarification.
- Environmental sustainability is a common focus, but policy interaction gaps might hinder strategy establishment

Assessment of the degree of compliance of partner regions to the ERA_FABIRC ideal type

Based on the analysis of survey results, the conclusions from Task 2.1 and the selected R&I ecosystems within Task 2.2 it will be possible to compare the current performance of partner regions and countries to the "ideal type" of ERA Hub emerging as a reference model.

As a result of this task regional profiles and compliance methodology was developed and implemented

ERA_FABRIC Ideal type

Structured assessment criteria (questions from the survey) of the 'ideal type' reference model using AHP (analytical hierarchy process) method

	AHP1:	LEVEL1:	AHP2:	LEVEL2:	AHP3:	
			0,59291	S1.1: R&I Collaboration Capacities	0,418967	1.1. There is high
	0,341787	S1: Access to Research & Innovation Infrastructure and Services			0,290118	1.2. There are j
					0,182645	1.3. There is so
					0,108270	1.4. There are
			0,40709	S1.2: Innovation Support Services	0,216310	1.5. Innovation
					0,334273	1.6a. There are
					0,318720	1.6b. There are
					0,130697	1.7. There shou
			0,1581	S2.1: Governence	0,205946	2.1. There is av
					0,154430	2.2. The public
					0,113504	2.10. The local
					0,178769	2.11. Good gov
					0,177973	2.12. The proce
		S2: Policy Support & Governance Processes			0,098269	2.13. There is a
					0,071108	2.14. There are
			0,68381	S2.2: Stakeholders Engagement	0,061518	2.3a. Major step
	0,198732				0,123600	2.3b. Major step
					0,186978	2.5. There are s
					0,169052	2.6. There are
					0,240889	2.8. There are
					0,217963	2.9. There is a
			0,1581	S2.3: Funding Support	0,371058	2.4a. There is lo
					0,234417	2.4b. There is lo
					0,263847	2.4c. There is lo
					0,130678	2.7. The differe
		S3: Collaboration & Knowledge Transfer	0,45331	S3.1: Collaboration Culture	0,149774	3.1a. There is a
					0,341608	3.1b. There is a
					0,175452	3.1c. There is a
					0,333166	3.3. There is a
			0,20342	S3.2: Collaboration Model	0,212159	3.2. The region
	0 450491				0,498863	3.4. There is ex
	0,459461				0,212377	3.5. There is clo
					0,076601	3.10. Leading lo
			0,34327	S3.3: R&I Activities Outcomes	0,196232	3.6. There shou
					0,158882	3.7. Research a
					0,200578	3.8. There is go
					0,444307	3.9. There is go

Regional ecosystems compliance assessment to ERA_FABRIC ideal type (three levels)

Level 0 – the highest-level compliance score

CONCLUSIONS

. The theoretical analysis permitted to extrapolate some assumptions about the characteristics of an ERA Hub as a potential entity adequate to the goals of the new ERA policy.

. The study of a sample of 15 heterogenoeus case-studies of knowledge and innovation ecosystems (reinforced by the results of a Survey among the stakeholders) allowed to understand their variety and to categorize different typologies, emphasizing at the same time their common elements:

- 1. A strong territorial vocation together with a clear tendency towards internationalization
- 2. A coexistence of knowledge and innovation processes led by the actors involved at different levels and strongly coordinated among them
- 3. A coexistence of public and private actors, stakeholders and final goals as well as a coexistence of market driven processes and ultimate goals defined by the public authorities, following a clear directionality
- 4. A clear focus on the environmental sustainability as a goal reachable through constant research and innovation activities oriented to well-defined intermediate and final objectives
- 5. A tendential dynamics towards potential systemic changes from the local context to the general context

These common elements make the ecosystems potential ERA hubs strongly based on

directionality, multi-level governance processes, horizon integration, holistic approach

